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CHAPTER 1

Get Started

1.1 Download and Setup

Currently, akid only supports installing from the source.

1.1.1 Dependency

akid depends on some regular numerical libraries. If you are using pip, you could install them as the following:

pip install numpy, scipy, matplotlib, gflags

Follow the official installation guide to install tensorflow.

1.1.2 Install from the source

Clone the repository

git clone https://github.com/shawnLeeZX/akid

1.1.3 Post installation setup

Environment Variables

If you want to use the dataset automatically download feature, an environment variable needs to be set. Add the
following line to .bashrc, or other configuration files of your favorite shell.

AKID_DATA_PATH= # where you want to store data

Also, remember to make akid visible by adding the folder that contains akid to PYTHONPATH.
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CHAPTER 2

Introduction

2.1 Why akid

Why another package on neural network?

Neural network, which is broadly named as Deep Learning nowadays, seems to have the potential to lead another
technology revolution. It has incurred wide enthusiasm in industry, and serious consideration in public sector and
impact evaluation in government. However, though being a remarkable breakthrough in high dimensional perception
problems academically and intellectually stimulating and promising, it is still rather an immature technique that is
fast moving and in shortage of understanding. Temporarily its true value lies in the capability to solve data analytic
problems in industry, e.g. self-driving cars, detection of lung cancer etc. On the other hand, Neural Network is a
technique that heavily relies on a large volume of data. It is critical for businesses that use such a technique to leverage
on newly available data as soon as possible, which helps form a positive feedback loop that improves the quality of
service.

Accordingly, to benefits from the newest development and newly available data, we want the gap between research
and production as small as possible. In this package, we explore technology stacks abstraction that enable fast research
prototyping and are production ready.

akid tries to provide a full stack of softwares that provides abstraction to let researchers focus on research instead
of implementation, while at the same time the developed program can also be put into production seamlessly in
a distributed environment, and be production ready when orchestrating with containers, a cluster manager, and a
distributed network file system.

At the top application stack, it provides out-of-box tools for neural network applications. Lower down, akid provides
programming paradigm that lets user easily build customized model. The distributed computing stack handles the
concurrency and communication, thus letting models be trained or deployed to a single GPU, multiple GPUs, or a
distributed environment without affecting how a model is specified in the programming paradigm stack. Lastly, the
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distributed deployment stack handles how the distributed computing is deployed, thus decoupling the research proto-
type environment with the actual production environment, and is able to dynamically allocate computing resources, so
developments (Devs) and operations (Ops) could be separated.

2.2 akid stack

Now we discuss each stack provided by akid.

2.2.1 Application stack

At the top of the stack, akid could be used as a part of application without knowing the underlying mechanism of
neural networks.

akid provides full machinery from preparing data, augmenting data, specifying computation graph (neural network
architecture), choosing optimization algorithms, specifying parallel training scheme (data parallelism etc), logging
and visualization.

Neural network training — A holistic example

To create better tools to train neural network has been at the core of the original motivation of akid. Consequently,
in this section, we describe how akid can be used to train neural networks. Currently, all the other feature resolves
around this.

The snippet below builds a simple neural network, and trains it using MNIST, the digit recognition dataset.

from akid import AKID_DATA_PATH
from akid import FeedSensor
from akid import Kid
from akid import MomentumKongFu
from akid import MNISTFeedSource

from akid.models.brains import LeNet

brain = LeNet(name="Brain")
source = MNISTFeedSource(name="Source",

url='http://yann.lecun.com/exdb/mnist/',
work_dir=AKID_DATA_PATH + '/mnist',
center=True,
scale=True,
num_train=50000,
num_val=10000)

sensor = FeedSensor(name='Sensor', source_in=source)
s = Kid(sensor,

brain,
MomentumKongFu(name="Kongfu"),
max_steps=100)

kid.setup()
kid.practice()

It builds a computation graph as the following
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The story happens underlying are described in the following, which also debriefs the design motivation and vision
behind.

akid is a kid who has the ability to keep practicing to improve itself. The kid perceives a data Source with
its Sensor and certain learning methods (nicknamed KongFu) to improve itself (its Brain), to fulfill a certain
purpose. The world is timed by a clock. It represents how long the kid has been practicing. Technically, the clock is
the conventional training step.

To break things done, Sensor takes a Source which either provides data in form of tensors from Tensorflow or
numpy arrays. Optionally, it can make jokers on the data using Joker, meaning doing data augmentation. The data
processing engine, which is a deep neural network, is abstracted as a Brain. Brain is the name we give to the data
processing system in living beings. A Brain incarnates one of data processing system topology, or in the terminology

2.2. akid stack 5
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of neural network, network structure topology, such as a sequentially linked together layers, to process data. Available
topology is defined in module systems. The network training methods, which are first order iterative optimization
methods, is abstracted as a class KongFu. A living being needs to keep practicing Kong Fu to get better at tasks
needed to survive.

A living being is abstracted as a Kid class, which assemblies all above classes together to play the game. The
metaphor means by sensing more examples, with certain genre of Kong Fu(different training algorithms and policies),
the data processing engine of the Kid, the brain, should get better at doing whatever task it is doing, letting it be image
classification or something else.

Visualization

As a library gearing upon research, it also has rich features to visualize various components of a neural network. It
has built-in training dynamics visualization, more specifically, distribution visualization on multi-dimensional tensors,
e.g., weights, activation, biases, gradients, etc, and line graph visualization on on scalars, e.g., training loss, validation
loss, learning rate decay, regularzation loss in each layer, sparsity of neuron activation etc, and filter and feature map
visualization for neural networks.

Distribution and scalar visualization are built in for typical parameters and measures, and can be easily extended, and
distributedly gathered. Typical visualization are shown below.

akid supports visualization of all feature maps and filters with control on the layout through Observer class. When
having finished creating a Kid, pass it to Observer, and call visualization as the following.

from akid import Observer

o = Observer(kid)
# Visualize filters as the following
o.visualize_filters()
# Or visualize feature maps as the following
o.visualize_activation()

Various layouts are provided when drawing the filters. Additional features are also available. The post-preprocessed
results are shown below.

2.2.2 Programming Paradigm

We have seen how to use functionality of akid without much programming in the previous section. In this section,
we would like to introduce the programming paradigm underlying the previous example, and how to use akid as
a research library with such paradigm. akid builds another layer of abstraction on top of Tensor: Block. Tensor
can be taken as the media/formalism signal propagates in digital world, while Block is the data processing entity that
processes inputs and emits outputs.

It coincides with a branch of “ideology” called dataism that takes everything in this world is a data processing entity.
An interesting one that may come from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature propagates. Information flow can be ab-
stracted as data propagating through inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and gives classification results. Everything
is a Block in akid.

A block could be as simple as a convonlutional neural network layer that merely does convolution on the input data
and outputs the results; it also be as complex as an acyclic graph that inter-connects blocks to build a neural network,
or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a block is able to contain states asso-
ciated with this processing unit. Signals are passed between blocks in form of tensors or list of tensors. Many heavy
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Fig. 2.1: Visualization of how distribution of multi-dimensional tensors change over time. Each line on the chart
represents a percentile in the distribution over the data: for example, the bottom line shows how the minimum value
has changed over time, and the line in the middle shows how the median has changed. Reading from top to bottom, the
lines have the following meaning: [maximum, 93%, 84%, 69%, 50%, 31%, 16%, 7%, minimum] These percentiles
can also be viewed as standard deviation boundaries on a normal distribution: [maximum, 𝜇+1.5𝜎, 𝜇+𝜎, 𝜇+0.5𝜎,
𝜇, 𝜇-0.5𝜎, 𝜇-𝜎, 𝜇-1.5𝜎, minimum] so that the colored regions, read from inside to outside, have widths [𝜎, 2𝜎, 3𝜎]
respectively.

2.2. akid stack 7



akid Documentation, Release 0.1

Fig. 2.2: Visualization of how important scalar measures change over time.

Fig. 2.3: Visualization of feature maps learned.

Fig. 2.4: Visualization of filters learned.
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Fig. 2.5: Illustration of the arbitrary connectivity supported by akid. Forward connection, branching and mergine,
and feedback connection are supported.

lifting has been done in the block (Block and its sub-classes), e.g. pre-condition setup, name scope maintenance,
copy functionality for validation and copy functionality for distributed replicas, setting up and gathering visualization
summaries, centralization of variable allocation, attaching debugging ops now and then etc.

akid offers various kinds of blocks that are able to connect to other blocks in an arbitrary way, as illustrated above.
It is also easy to build one’s own blocks. The Kid class is essentially an assembler that assemblies blocks provided
by akid to mainly fulfill the task to train neural networks. Here we show how to build an arbitrary acyclic graph of
blocks, to illustrate how to use blocks in akid. A brain is the data processing engine to process data supplied by
Sensor to fulfill certain tasks. More specifically,

• it builds up blocks to form an arbitrary network

• offers sub-graphs for inference, loss, evaluation, summaries

• provides access to all data and parameters within

To use a brain, feed in data as a list, as how it is done in any other blocks. Some pre-specified brains are available
under akid.models.brains. An example that sets up a brain using existing brains is:

# ... first get a feed sensor
sensor.setup()
brain = OneLayerBrain(name="brain")
input = [sensor.data(), sensor.labels()]
brain.setup(input)

Note in this case, data() and labels() of sensor returns tensors. It is not always the case. If it does not, saying return a
list of tensors, you need do things like:

input = [sensor.data()]
input.extend(sensor.labels())

2.2. akid stack 9
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Act accordingly.

Similarly, all blocks work this way.

A brain provides easy ways to connect blocks. For example, a one layer brain can be built through the following:

class OneLayerBrain(Brain):
def __init__(self, **kwargs):

super(OneLayerBrain, self).__init__(**kwargs)
self.attach(

ConvolutionLayer(ksize=[5, 5],
strides=[1, 1, 1, 1],
padding="SAME",
out_channel_num=32,
name="conv1")

)
self.attach(ReLULayer(name="relu1"))
self.attach(

PoolingLayer(ksize=[1, 5, 5, 1],
strides=[1, 5, 5, 1],
padding="SAME",
name="pool1")

)

self.attach(InnerProductLayer(out_channel_num=10, name="ip1"))
self.attach(SoftmaxWithLossLayer(

class_num=10,
inputs=[

{"name": "ip1", "idxs": [0]},
{"name": "system_in", "idxs": [1]}],

name="loss"))

It assembles a convolution layer, a ReLU Layer, a pooling layer, an inner product layer and a loss layer. To attach a
block (layer) that directly takes the outputs of the previous attached layer as inputs, just directly attach the block. If
inputs exists, the brain will fetch corresponding tensors by name of the block attached and indices of the outputs of
that layer. See the loss layer above for an example. Note that even though there are multiple inputs for the brain, the
first attached layer of the brain will take the first of these input by default, given the convention that the first tensor is
the data, and the remaining tensors are normally labels, which is not used till very late.

As an example to build more complex connectivity scheme, residual units can be built using Brain as shown below.

Parameter tuning

akid offers automatic parameter tuning through defining template using tune function.

akid.train.tuner.tune(template, opt_paras_list=[{}], net_paras_list=[{}], repeat_times=1,
gpu_num_per_instance=1, debug=False)

A function tune that takes a Brain jinja2 template class and a parameters to fill the template in runtime. Param-
eters provided should complete the remaining network parameters in the template. The tuner is not aware of
the content of the list items. It is up to the user to define template right, so parameters will be filled in the right
place.

The jinja2 template must be a function named setup, and return a set up Kid. All necessary module imports
should be put in the function instead of module level import usually.

The tune function would use all available GPUs to train networks with all given different set of parameters. If
available GPUs are not enough, the ones that cannot be trained will wait till some others finish, and get its turn.

## Parameter Tuning Usage
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Fig. 2.6: One residual units. On the left is the branch that builds up patterns complexity, and on the right is the stem
branch that shorts any layers to any layer. They merge at the at the start and at the end of the branching points.

2.2. akid stack 11
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Tunable parameters are divided into two set, network hyper parameters, net_paras_list, and optimization hyper
parameters, opt_paras_list. Each set is specified by a list whose item is a dictionary that holds the actual value
of whatever hyper parameters defined as jinja2 templates. Each item in the list corresponds to a tentative training
instance. network paras and optimization paras combine with each other exponentially(or in Cartesian Product
way if we could use Math terminology), which is to say if you have two items in network parameter list, and
two in optimization parameters, the total number of training instances will be four.

Final training precisions will be returned as a list. Since the final precision normally will not be the optimal one,
which normally occurs during training, the returned values are used for testing purpose only now

## Run repeated experiment

To run repeated experiment, just leave opt_paras_list and net_paras_list to their default value.

## GPU Resources Allocation

If the gpu_num_per_instance is None, a gpu would be allocated to each thread, otherwise, the length of the list
should be the same with that of the training instance (aka the #opt_paras_list * #net_paras_list * repeat_times),
or an int.

Given the available GPU numbers, a semaphore is created to control access to GPUs. A lock is created to control
access to the mask to indicator which GPU is available. After a process has modified the gpu mask, it releases
the lock immediately, so other process could access it. But the semaphore is still not release, since it is used to
control access to the actual GPU. A training instance will be launched in a subshell using the GPU acquired.
The semaphore is only released after the training has finished.

## Example

For example, to tune the activation function and learning rates of a network, first we set up network parameters
in net_paras_list, optimization parameters in opt_paras_list, build a network in the setup function, then pass all
of it to tune:

net_paras_list = []
net_paras_list.append({

"activation": [
{"type": "relu"},
{"type": "relu"},
{"type": "relu"},
{"type": "relu"}],

"bn": True})
net_paras_list.append({

"activation": [
{"type": "maxout", "group_size": 2},
{"type": "maxout", "group_size": 2},
{"type": "maxout", "group_size": 2},
{"type": "maxout", "group_size": 5}],

"bn": True})

opt_paras_list = []
opt_paras_list.append({"lr": 0.025})
opt_paras_list.append({"lr": 0.05})

def setup(graph):

brain.attach(cnn_block(
ksize=[8, 8],
init_para={

"name": "uniform",
"range": 0.005},

wd={"type": "l2", "scale": 0.0005},
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out_channel_num=384,
pool_size=[4, 4],
pool_stride=[2, 2],
activation={{ net_paras["activation"][1] }},
keep_prob=0.5,
bn={{ net_paras["bn"] }}))

tune(setup, opt_paras_list, net_paras_list)

2.2.3 Distributed Computation

The distributed computing stack is responsible to handle concurrency and communication between different computing
nodes, so the end user only needs to deal with how to build a power network. All complexity has been hidden in the
class Engine. The usage of Engine is just to pick and use.

More specifically, akid offers built-in data parallel scheme in form of class Engine. Currently, the engine mainly works
with neural network training, which is be used with Kid by specifying the engine at the construction of the kid.

As an example, we could do data parallelism on multiple computing towers using:

kid = kids.Kid(
sensor,
brain,
MomentumKongFu(lr_scheme={"name": LearningRateScheme.placeholder}),
engine={"name": "data_parallel", "num_gpu": 2},
log_dir="log",
max_epoch=200)

The end computational graph constructed is illustrated below

2.2.4 Distributed Deployment

The distributed deployment stack handles the actual production environment, thus decouples the develop-
ment/prototyping environment and production environment. Mostly, this stack is about how to orchestrate with exist-
ing distributed ecosystem. Tutorials will be provided when a production ready setup has been thoroughly investigated.
Tentatively, glusterfs and Kubernetes are powerful candidates.

2.3 Comparison with existing packages

akid differs from existing packages from the perspective that it aims to integrate technology stacks to solve both
research prototyping and industrial production. Existing packages mostly aim to solve problems in one of the stack.
akid reduces the friction between different stacks with its unique features. We compare akid with existing packages
in the following briefly.

Theano, Torch, Caffe, MXNet are packages that aim to provide a friendly front end to complex computation back-end
that are written in C++. Theano is a python front end to a computational graph compiler, which has been largely
superseded by Tensorflow in the compilation speed, flexibility, portability etc, while akid is built on of Tensorflow.
MXNet is a competitive competitor to Tensorflow. Torch is similar with theano, but with the front-end language to be
Lua, the choice of which is mostly motivated from the fact that it is much easier to interface with C using Lua than
Python. It has been widely used before deep learning has reached wide popularity, but is mostly a quick solution to
do research in neural networks when the integration with community and general purpose production programming
are not pressing. Caffe is written in C++, whose friendly front-end, aka the text network configuration file, loses its
affinity when the model goes more than dozens of layer.

2.3. Comparison with existing packages 13
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Fig. 2.7: Illustration of computational graph constructed by a data parallel engine. It partitions a mini-batch of data
into subsets, as indicated by the data_split blue blocks, and passes the subsets to replicates of neural network models
at different coputing tower, as indicated by the gray blocks one level above blue blocks, then after the inference results
have been computed, the results and the labels (from the splitted data block) will be passed to the optimizers in the
same tower, as indicated by red and orange blocks named opt, to compute the gradients. Lastly, the gradients will
be passed to an tower that computes the average of the gradients, and pass them back to neural networks of each
computing towers to update their parameters.
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DeepLearning4J is an industrial solution to neural networks written in Java and Scala, and is too heavy weight for
research prototyping.

Perhaps the most similar package existing with akid is Keras, which both aim to provide a more intuitive interface
to relatively low-level library, i.e. Tensorflow. akid is different from Keras at least two fundamental aspects. First,
akid mimics how signals propagates in nature by abstracting everything as a semantic block, which holds many
states, thus is able to provide a wide range of functionality in a easily customizable way, while Keras uses a functional
API that directly manipulates tensors, which is a lower level of abstraction, e.g. it have to do class attributes traverse to
retrieve layer weights with a fixed variable name while in akid variable are retrieved by names. Second, Keras mostly
only provides an abstraction to build neural network topology, which is roughly the programming paradigm stack of
akid, while akid provides unified abstraction that includes application stack, programming stack, and distributed
computing stack. A noticeable improvement is Keras needs the user to handle communication and concurrency, while
the distributed computing stack of akid hides them.

2.3. Comparison with existing packages 15
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CHAPTER 3

HOW TO

In this HOW-TO page, available blocks are described.

TODO: finished this section

3.1 Block

akid builds another layer of abstraction on top of Tensor: Block. Tensor can be taken as the media/formalism signal
propagates in digital world, while Block is the data processing entity that processes inputs and emits outputs.

It coincides with a branch of “ideology” called dataism that takes everything in this world is a data processing entity.
An interesting one that may come from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature propagates. Information flow can be ab-
stracted as data propagating through inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and gives classification results. Everything
is a Block in akid.

A block could be as simple as a convonlutional neural network layer that merely does convolution on the input data
and outputs the results; it also be as complex as an acyclic graph that inter-connects blocks to build a neural network,
or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a block is able to contain states asso-
ciated with this processing unit. Signals are passed between blocks in form of tensors or list of tensors. Many heavy
lifting has been done in the block (Block and its sub-classes), e.g. pre-condition setup, name scope maintenance,
copy functionality for validation and copy functionality for distributed replicas, setting up and gathering visualization
summaries, centralization of variable allocation, attaching debugging ops now and then etc.

3.2 Source

Signals propagated in nature are all abstracted as a source. For instance, an light source (which could be an image
source or video source), an audio source, etc.

As an example, saying in supervised setting, a source is a block that takes no inputs (since it is a source), and outputs
data. A concrete example could be the source for the MNIST dataset:

source = MNISTFeedSource(name="MNIST",
url='http://yann.lecun.com/exdb/mnist/',
work_dir=AKID_DATA_PATH + '/mnist',
center=True,
scale=True,

17
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num_train=50000,
num_val=10000)

The above code creates a source for MNIST. It is supposed to provide data for placeholders of tensorflow through
method get_batch. Say:

source.get_batch(100, get_val=False)

would return a tuple of numpy array of (images, labels).

It could be used standalone, or passed to a Sensor.

3.2.1 Developer Note

A top level abstract class Source implements basic semantics of a natural source. Other abstract classes keep imple-
menting more concrete sources. Abstract Source s need to be inherited and abstract methods implemented before it
could be used. To create a concrete Source, you could use multiple inheritance to compose the Source you needs.
Available sources are kept under module sources.

3.3 Sensor

The interface between nature and an (artificial) signal processing system, saying a brain, is a Sensor. It does data
augmentation (if needed), and batches datum from Source.

Strictly speaking, the functional role of a sensor is to convert the signal in the natural form to a form the data processing
engine, which is the brain in this case, could process. It is a Analog/Digital converter. However, the input from Source
is already in digital form, so this function is not there anymore. But the data batching, augmentation and so on could
still be put in preprocessing. Thus we still use the name sensor for concept reuse.

Mathematically, it is a system made up with a series of linked blocks that do data augmentation.

As an example, again saying in supervised setting, a sensor is a block that takes a data source and output sensed
(batched and augmented) data. A sensor needs to be used along with a source. A concrete example could be the sensor
for the MNIST dataset. Taking a Source, we could make a sensor:

sensor = FeedSensor(name='data', source_in=source)

The type of a sensor must match that of a source.

For IntegratedSensor, it is supported to add Joker to augment data. The way to augment data is similar with building
blocks using Brain, but simpler, since data augmentation is added sequentially, shown in the following:

sensor = IntegratedSensor(source_in=cifar_source,
batch_size=128,
name='data')

sensor.attach(FlipJoker(flip_left_right=True, name="left_right_flip"))
sensor.attach(PaddingLayer(padding=[4, 4]))
sensor.attach(CropJoker(height=32, width=32, name="crop"))

The end computational graph is shown as following.
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3.4 Brain

A brain is the data processing engine to process data supplied by Sensor to fulfill certain tasks. More specifically,

• it builds up blocks to form an arbitrary network

• offers sub-graphs for inference, loss, evaluation, summaries

• provides access to all data and parameters within

To use a brain, feed in data as a list, as how it is done in any other blocks. Some pre-specified brains are available
under akid.models.brains. An example that sets up a brain using existing brains is:

# ... first get a feed sensor
sensor.setup()
brain = OneLayerBrain(name="brain")

3.4. Brain 19
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input = [sensor.data(), sensor.labels()]
brain.setup(input)

Note in this case, data() and labels() of sensor returns tensors. It is not always the case. If it does not, saying return a
list of tensors, you need do things like:

input = [sensor.data()]
input.extend(sensor.labels())

Act accordingly.

Similarly, all blocks work this way.

A brain provides easy ways to connect blocks. For example, a one layer brain can be built through the following:

class OneLayerBrain(Brain):
def __init__(self, **kwargs):

super(OneLayerBrain, self).__init__(**kwargs)
self.attach(

ConvolutionLayer(ksize=[5, 5],
strides=[1, 1, 1, 1],
padding="SAME",
out_channel_num=32,
name="conv1")

)
self.attach(ReLULayer(name="relu1"))
self.attach(

PoolingLayer(ksize=[1, 5, 5, 1],
strides=[1, 5, 5, 1],
padding="SAME",
name="pool1")

)

self.attach(InnerProductLayer(out_channel_num=10, name="ip1"))
self.attach(SoftmaxWithLossLayer(

class_num=10,
inputs=[

{"name": "ip1", "idxs": [0]},
{"name": "system_in", "idxs": [1]}],

name="loss"))

It assembles a convolution layer, a ReLU Layer, a pooling layer, an inner product layer and a loss layer. To attach a
block (layer) that directly takes the outputs of the previous attached layer as inputs, just directly attach the block. If
inputs exists, the brain will fetch corresponding tensors by name of the block attached and indices of the outputs of
that layer. See the loss layer above for an example. Note that even though there are multiple inputs for the brain, the
first attached layer of the brain will take the first of these input by default, given the convention that the first tensor is
the data, and the remaining tensors are normally labels, which is not used till very late.

3.5 KongFu

3.6 System

This module provides systems of different topology to compose ‘Block‘s to create more complex blocks. A system
does not concern which type of block it holds, but only concerns the mathematical topology how they connect.

20 Chapter 3. HOW TO



CHAPTER 4

Tutorials of akid

4.1 Distributed akid

In this tutorial, we will write a program that does computation distributedly. The full code, dist_akid can be found
under example folder.

OK, now it is just some pointers.

We use a Source, a Sensor, a Brain in this case. Read How To to know what they do. Also read the tensorflow
tutorial for distributed computation. This tutorial ports the distributed example provided by tensorflow. The usage of
the program is the same as in the tensorflow tutorial.

After successfully running the program, you are supposed to see outputs like:

2.45249
2.40535
2.29056
2.2965
2.25567
2.27914
2.26652
2.27446
2.2911
2.26182
2.17706
2.18829
2.23567
2.21965
2.20997
2.14844
2.10352
2.066
2.12029
2.10526
2.10102
2.03739
2.04613
2.05246
2.04463
2.03297

which is the training loss.
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CHAPTER 5

Architecture and Design Principles

TODO: finish this section

5.1 Architecture

5.1.1 Kick start clock

A centralized clock is available in akid to model the elapsing time in the physical world. It is roughly the training
step, or iteration step when training a neural network.

If any training is supposed to done with the machinery provided akid, the clock needs to be manually started using
the following snippets. However, if you are using Kid class, it will be called automatically.

from akid.common import init
init()

5.1.2 Model Abstraction

All core classes a sub class of Block.

The philosophy is to bring neural network to its biological origin, the brain, a data processing engine that is tailored to
process hierarchical data of the universe. The universe is built block by block, from micro world, modules consisting
of atoms, to macro world, buildings made up by bricks and windows, and cosmic world, billions of stars creating
galaxies.

Tentatively, there are two kinds of blocks — simple blocks and complex blocks. Simple blocks are traditional pro-
cessing units such as convolutional layers. While complex blocks holds sub-blocks with certain topology. Complex
blocks are System. A module systems offers different Systems to model the mathematical topological structures
how data propagates. These two types of blocks build up the recursive scheme to build arbitrarily complex blocks.

5.1.3 Model and Computation

Blocks are responsible for easing building computational graph. Given two-phase procedure that first builds compu-
tational graph, then executes that graph, each object (including but not limiting to blocks) who actually needs to do
computation has its own computational components, a graph and a session. If no higher level one is given, the block
will create a suite of its own; otherwise, it will use what it is given.
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Graph

A model’s construction is separated from its execution environment.

To use most classes, its setup method should be called before anything else. This is tied with Tensorflow’s two-stage
execution mechanism: first build the computational graph in python, then run the graph in the back end. The setup
of most classes build and do necessary initialization for the first stage of the computation. The caller is responsible for
passing in the right data for setup.

setup should be called under a tf.Graph() umbrella, which is in the simplest case is a context manager that open
a default graph:

TODO: build the umbrella within.

with self.graph.as_default():
# Graph building codes here

That is to say if you are going to use certain class standalone, a graph context manager is needed.

Each System takes a graph argument on construction. If no one is given, it will create one internally. So no explicit
graph umbrella is needed.

Session

TODO: abstract this within

A graph hold all created blocks. To actually run the computational graph, all computational methods has an sess
argument to take an opened tf.Session() to run within, thus any upper level execution environment could be
passed down. The upper level code is responsible to set up a session. In such a way, computational graph construction
does not need to take care of execution. However, for certain class, such as a Survivor, if an upper level session does
not exist, a default one will be created for the execution for convenience.

This allows a model to be deployed on various execution environment.

5.2 Design Principles

5.2.1 Compactness

The design principle is to make the number of concepts exist at the same time as small as possible.

5.2.2 LEGO Blocks

The coding process is to assembly various smaller blocks to form necessary functional larger blocks.

The top level concept is a survivor. It models how an agent explore the world by learning in order to survive, though
the world has not been modeled yet. Up to now, it could be certain virtual reality world that simulate the physical
world to provide environment to the survivor.

A Survivor assemblies together a Sensor, a Brain and a KongFu. A Sensor assemblies together Jokers
and data Sources. A Brain assemblies together a number of ProcessingLayer to form a neural networking.
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5.2.3 Distributed Composition

Every sub-block of a large block should be self-contained. A large block only needs minimum amount of information
from a sub block. They communicate through I/O interfaces. So the hierarchical composition scale up in a distributed
way and could goes arbitrary deep with manageable complexity.

5.2. Design Principles 25
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CHAPTER 6

Model Zoo

Model building source files can be found under example folder, where AlexNet, Maxout Network, VGG style network,
Residual Network, are reproduced.

akid is a python package written for doing research in Neural Network. It also aims to be production ready by
taking care of concurrency and communication in distributed computing. It is built on Tensorflow. If combining
with GlusterFS, Docker and Kubernetes, it is able to provide dynamic and elastic scheduling, auto fault recovery and
scalability.

It aims to enable fast prototyping and production ready at the same time. More specifically, it

• supports fast prototyping

– built-in data pipeline framework that standardizes data preparation and data augmentation.

– arbitrary connectivity schemes (including multi-input and multi-output training), and easy retrieval of
parameters and data in the network

– meta-syntax to generate neural network structure before training

– support for visualization of computation graph, weight filters, feature maps, and training dynamics statis-
tics.

• be production ready

– built-in support for distributed computing

– compatibility to orchestrate with distributed file systems, docker containers, and distributed operating sys-
tems such as Kubernetes. (This feature mainly is a best-practice guide for K8s etc, which is under experi-
menting and not available yet.)

The name comes from the Kid saved by Neo in Matrix, and the metaphor to build a learning agent, which we call kid
in human culture.

It distinguish itself from an unique design, which is described in the following. akid builds another layer of abstraction
on top of Tensor: Block. Tensor can be taken as the media/formalism signal propagates in digital world, while Block
is the data processing entity that processes inputs and emits outputs.

It coincides with a branch of “ideology” called dataism that takes everything in this world is a data processing entity.
An interesting one that may come from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature propagates. Information flow can be ab-
stracted as data propagating through inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and gives classification results. Everything
is a Block in akid.
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Fig. 6.1: Illustration of the arbitrary connectivity supported by akid. Forward connection, branching and mergine,
and feedback connection are supported.

A block could be as simple as a convonlutional neural network layer that merely does convolution on the input data
and outputs the results; it also be as complex as an acyclic graph that inter-connects blocks to build a neural network,
or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a block is able to contain states asso-
ciated with this processing unit. Signals are passed between blocks in form of tensors or list of tensors. Many heavy
lifting has been done in the block (Block and its sub-classes), e.g. pre-condition setup, name scope maintenance,
copy functionality for validation and copy functionality for distributed replicas, setting up and gathering visualization
summaries, centralization of variable allocation, attaching debugging ops now and then etc.
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Python Module Index

a
akid.core.blocks, 6
akid.core.brains, 9
akid.core.engines, 13
akid.core.sensors, 18
akid.core.sources, 17
akid.core.systems, 20
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Index

A
akid.core.blocks (module), 6, 17, 27
akid.core.brains (module), 9, 19
akid.core.engines (module), 13
akid.core.sensors (module), 18
akid.core.sources (module), 17
akid.core.systems (module), 20

T
tune() (in module akid.train.tuner), 10
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